О нас


Инновационные технологии

Нейронавигацией называют использование различных технологий для осуществления прецизионной локализации цели во время операции у реального больного.

Современные навигационные системы:

1.   Системы  классической стереотаксической нейрохирургии, которые используют жесткую привязку головы и всех интракраниальных структур больного к направляющей раме, к которой крепится хирургический инструмент

Однако независимо от конструкции в каждом аппарате сохраняется основной принцип стереотаксического метода- сопоставление координантной системы мозга с координантной системой стереотаксического прибора

2. Системы, использующие пространственную привязку больного не в пространстве ограниченного рамой, а в пространстве вокруг операционного стола. При этом отслеживается движения инструмента в руках хирурга и в реальном времени сообщается, где он находится.

Безрамочная нейронавигация Vector Vision (BrainLab, Германия). Проводили первый этап навигации – предоперационное планирование, которое заключалось в установке виртуальных точек планируемого доступа для предоперационного построения оптимальной траектории к патологическому очагу, а при необходимости делали трехмерное построение этого очага. Траектория доступа рассчитывалась таким образом, чтобы не повредить функционально значимые зоны.

Перед началом операции (после введения в наркоз) на некотором удалении от области вмешательства жестко крепится специальная навигационная рама с рядом светодиодов. К скобе Мейфилда прикреплялся своего рода "антенна"- активный следящий инфракрасный датчик.

Далее специальной указкой с лазерным излучателем хирургом очерчивается поверхность головы больного, используя естественные анатомические ориентиры (надбровные дуги, нижний край глазницы, переносицу и др.). Система связывает трехмерное изображение из своей памяти с реальным положением головы больного. После регистрации навигационная система выдает точность соответствия головы пациента и виртуальной модели на дисплее.

Под контролем данных дисплея навигационной установки в режиме реального времени с помощью инфракрасного зонда планировался экономный кожный разрез и краниотомия, определяли оптимальное место энцефалотомии, траекторию до опухоли и границы опухоли.

Хирург в любой момент может с точностью до 1-2 мм контролировать положение инструмента, планировать траекторию доступа, и достигать выбранной точки наиболее оптимальным и малоинвазивным путем.

Контроль положения хирургических инструментов осуществляется по монитору навигационной системы в трех плоскостях (аксиальной, сагитальной и коронарной) на различных этапах оперативного вмешательства.

Референтная рама так же закрепляется и на операцинном микроскопе. Теперь любые перемещения операционного микроскопа  отображаются на мониторе навигационной станции. На мониторе навигационной станции совмещается интраоперационная картина в операционной ране от микроскопа с объемной реконструкцией мозга, патологического очага и сосудов.

При удалении менингиом хиазмально-селлярной области применение навигации и операционного микроскопа дает возможность выделить и сохранить внутреннюю сонную  и передние мозговые артерии, предотвратить травму сосудов артериального круга мозга, обеспечить анатомическую сохранность стебля гипофиза и зрительных нервов.

При удалении внутримозговых новообразований функционально важных зон мозга с высокой точностью можно выявить расположение двигательных и чувствительных зон коры, а также основные речевые центры (Брока и Вернике), их топографическое взаимоотношение с опухолью. Трехмерная (3D) реконструкция кортикальных вен играет важную роль в визуализации крупных вен, находящихся в проекции объемного образования. Эти методы при их комплексном использовании дают возможность планировать хирургический доступ таким образом, чтобы снизить вероятность повреждения функционально значимых зон, церебральных сосудов, уменьшить травматизацию здоровой мозговой ткани при стремлении к максимальной резекции опухоли.

В ходе удаления новообразования нейронавигация позволяет точно ориентироваться в зоне хирургического воздействия, оптимизировать доступ к опухоли с учетом морфологических и функциональных особеностей паратуморозной зоны.

На сегодняшний день навигационные технологии получили широкое распространение в практической нейрохирургии. Безрамочная навигация, основанная на предоперационных КТ и МРТ, позволяет спланировать хирургический доступ, свести к минимуму кожный разрез, уменьшить размер трепанации, однако она не учитывает изменение анатомии головного мозга в ходе оперативного вмешательства. Причинами изменения анатомии являются, прежде всего, удаление объема опухоли, отек мозга, а также потеря цереброспинальной жидкости, которые и приводят к смещению мозга. Для решения этой проблемы в настоящее время используются различные методики интраоперационной визуализации (КТ, МРТ, ультразвуковая диагностика)

Безрамочная биопсия с использованием системы нейронавигации внутримозговых опухолей функционально значимых зон мозга, диффузном поражении опухолью полушарий головного мозга, глубинной межполушарной локализации является адекватной альтернативой рамочному стереотаксису.

ФГУ "Национальный Медико-хирургический Центр им. Н.И.Пирогова"
Министерства здравоохранения и социального развития РФ
105203 г. Москва, ул. Нижняя Первомайская, 70.